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The scheme of the on-shell expansion is applied to the nonequilibrium generating functionalG. It is a
systematic way of extracting physical information fromG; the lowest equation fixes the expectation value of a
chosen operator, the first order term is the equation determining the excitation spectrum, and higher orders
describe the nonlinear effects among the excited modes. The approximation scheme is fixed at the level of the
generating functional, which preserves the symmetry properties of the Hamiltonian. The formalism is illus-
trated using the model Hamiltonian of the superfluid4He. @S1063-651X~96!05405-0#

PACS number~s!: 05.30.2d, 05.70.Ln

I. INTRODUCTION

When we discuss a macroscopic system that contains a
huge number of degrees of freedom, it is crucial to rewrite
the theory in terms of a small number of coordinates. These
variables should include experimentally observable ones and
we are interested in a theory written using these macroscopic
coordinates.

Several methods have been known to accomplish the
above task; the method of the projection operator discusses
the dynamical evolution of the system only in the space
where all the variables are projected onto the space of the
variable we are interested in. In this way we get, for ex-
ample, the equation of motion for the relevant variable. Or,
although quite different technically but essentially equivalent
in philosophy to the way of the projection operator, we inte-
grate out in path-integral representation over all the variables
except for those we need. The resulting theory describes the
system in terms of the coordinates that are left fixed.

There is another method to meet the purpose; the method
of the Legendre transformation. Here we integrate out over
all the variables but do so in the presence of thec-number
source term to probe the relevant variable. The probe is set to
be zero in the end of the calculation. Consider the equilib-
rium statistical mechanics and suppose that we are interested
in the operatorÔ. ~We use the hat to denote the operator and
take a single operator but the generalization to the multiple
operator case is straightforward.! The HamiltonianĤ of the
system is changed intoĤJ[Ĥ2JÔ and trace out by all the
coordinates~including Ô). Thus we define the generating
function, or the Gibbs free energy,W@J# as

exp~2bW@J# !5Tr exp~2bĤJ!. ~1.1!

Hereb5(kBT)
21; kB is the Boltzmann constant andT the

temperature. The Legendre transformation is done as fol-
lows:

G@f#[W@J#2J
dW@J#

dJ
, f52

dW@J#

dJ
5^Ô&. ~1.2!

In the above expressionJ is expressed byf through the
inversion of the second equation of~1.2! and we insert it into
the first one. We callG@f# the Helmholtz free energy. Now

we have an identity of the Legendre transformation
dG@f#/df52J, and the mathematical expression for re-
moving the probe is the stationary equation

dG@f#

df
50. ~1.3!

This determines the expectation value ofÔ and is in fact an
exact self-consistent equation forf. Necessary formulas of
the Legendre transformation are summarized in Appendix A.

The method of Legendre transformation deals only with
the expectation values so that all the variables that appear in
any expressions arec numbers. This is because we have
integrated over all the fluctuations. However, since it is done
under the presence of the probe coupled toÔ, the fluctua-
tions in the channelÔ can be extracted in the form of cor-
relation functions by the appropriate differentiations of
W@J# by the probeJ. The same is also true forG@f#. In this
senseW@J# or G@f# has two meanings at the same time: free
energy and the generator of correlation functions.

The technique can readily be extended to the dynamical
time-dependent case where we introduce the time-dependent
probe term and the time-dependent stationary equation deter-
mines the time evolution of the expectation value, i.e., equa-
tion of motion of^Ô& t .

The purpose of this paper is to apply the method of the
Legendre transformation, or the generating functional, to the
time-dependent nonequilibrium processes and to show how
we can get the physical information from the nonequilibrium
generating functional. After introducing the definitions of
two generating functionals, the method of on-shell expansion
is explained and applied to the generating functional.~The
method has already been applied to the zero temperature sys-
tems@1–5#.!

Apart from the obvious hope of elucidating hitherto un-
noticed important properties of the nonequilibrium generat-
ing functional, which has attracted much attention nowadays,
we have other motivations, which are summarized below to-
gether with results obtained in this paper. The possible ap-
plications of our studies are also suggested.

~i! First of all we have to know how experimentally ob-
tained data are calculable by the generating functional. The
on-shell expansion is the formalism invented for this pur-
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pose. The process is quite systematic; the stationary equation
of the generating functional determines the expectation value
and we expand in terms of the small deviation~i.e., small
oscillation! from the solution thus fixed. The lowest equation
of this expansion takes the form of an eigenvalue equation,
which gives us the excitation spectrum above the chosen
solution.

~ii ! A remarkable fact is that all the higher orders of the
on-shell expansion can be summed up and the resulting ex-
pression takes the form of the coherent state multiplied by
the density matrix. This newly obtained state is a novel state
~ground state in the case of zero temperature! which is writ-
ten as a coherent sum of the modes excited above the old
state, thus leading to the connection formula of the two. In
the classical mechanical language, the formula relates two
minima of the potential by summing up infinite series of the
small oscillation around one of the minima.

~iii ! In the field theoretical case, one is frequently inter-
ested in the condensed ground state and our formula is an
exact one, which, in its lowest approximation, coincides with
the usual form of the simplest trial state in all known cases.
Thus our formula suggests how one takes and improves the
trial state in the variational calculations. The statement can
be applied to the case where one of the states is unstable.
How one can describe the unstable state by the operator re-
ferring to the stable ground state is a problem that has a long
history. Our formalism may provide a method to this prob-
lem.

~iv! When one wants to discuss the gauge theory and
when the gauge invariance has to be maintained throughout
the calculation, one has to invent somehow a gauge invariant
variational approach. But it is not known at present to our
knowledge. Since our formulas are exact, they are gauge
invariant and they can be a candidate for this trial state.
Indeed this was the first motivation for the present investiga-
tions.

~v! Take a macroscopic system. Our method can be used
to study the problem of how to separate, or how to elucidate
the interplay between, the systematic motion and the fluctua-
tion around it. The systematic motion is represented by the
expectation value and the fluctuation by the small oscillation.
When the small oscillations are added up, the systematic part
shows a macroscopic change, which is expressed in our for-
malism by the shift of the~ground! state.

Below we present the general formalism of the on-shell
expansion and then an example is studied taking the super-
fluid 4He model Hamiltonian. Mathematical manipulations
necessary for these topics are mainly contained in Appen-
dixes A–E.

II. NONEQUILIBRIUM GENERATING FUNCTIONALS

A. Definition of W†J1 ,J2‡ and G†f1 ,f2‡

Let us define the nonequilibrium generating functional.
Consider a field theoretical system described by the Hamil-
tonian operatorĤ. ~Although we take a field theoretical sys-
tem in this paper, the arguments below apply to any dynami-
cal system.! Since we want to study the dynamical
nonequilibrium processes, a time-dependent external force
J(t,x) is introduced that couples to some physical quantity
Ô(x) of the system. ThisJ(t,x) is a fictitious source to be set

to zero in the end. Thus the Hamiltonian of the system
changes with time. It is expressed as

Ĥ~ t !5Ĥ2E d3x J~ t,x!Ô~x!. ~2.1!

Then the expectation valuêÔ(x)& t is given as

^Ô~x!& t5Tr$r̂ I Û~ t,t I !
†Ô~x!Û~ t,t I !%, ~2.2!

Û~ t,t I !5T expS 2
i

\Et I
t

ds Ĥ~s! D , ~2.3!

where the symbol T implies the time ordering operation and
† denotes the adjoint. The matrixr̂ I is an arbitrary density
operator of the initial timet I , which need not necessarily be
an equilibrium distribution.

Now we try to extend the equilibrium generating func-
tions presented in the Introduction to the nonequilibrium sys-
tems. There are two types of nonequilibrium generating
functionals,W@J1 ,J2# andG@f1 ,f2#, which are extensions
of Gibb’s and Helmholtz’s free energy in the equilibrium
case, respectively. The definitions ofW@J1 ,J2# and
G@f1 ,f2# are given as follows. The generating functional
W@J1 ,J2# is first defined by introducing two kinds of real
valued sourcesJ1(t) andJ2(t):

e~ i /\!W@J1 ,J2#5Tr$ÛJ1
r̂ I~ÛJ2

!†%, ~2.4!

ÛJi
5T expF2

i

\Et I
tF
dtS Ĥ2E d3x Ji~x,t !Ô~x! D G

~ i51,2!. ~2.5!

The final timetF here is taken to be sufficiently large, satis-
fying t I,t,tF , wheret is the time we look at the system.

The double path formulation of nonequilibrium theory has
a long history, starting from Schwinger’s work@6–10#. For
an extensive investigation, see Refs.@10,11#.

SinceJ1ÞJ2 in ~2.4! ~otherwiseW becomes independent
of J1 and J2), the time evolution ofr̂ I is not physical. So
W@J1 ,J2# itself is not a physical quantity in contrast to the
equilibrium Gibbs free energyW@J# of ~1.1!, which is a
physical one in the sense that it is the free energy of the
system with HamiltonianĤ2JÔ. In this sense it is impor-
tant to note that there is no genuine generating functional of
equilibrium type for the nonequilibrium processes. However,
this does not invalidate the use ofW@J1 ,J2#; the functional
W@J1 ,J2# does play the role of the generating functional and
all the physical quantities~as far as they are related to the
channel we are probing! can be extracted from it. These will
become clear in the following.

The second nonequilibrium generating functional is de-
fined by the double Legendre transformation,

G@f1 ,f2#5W@J1 ,J2#2(
i51

2 E d4xJi~x!
dW@J1 ,J2#

dJi~x!
,

~2.6!
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f i~x!5~21! i11
dW@J1 ,J2#

dJi~x!
~ i51,2!, ~2.7!

where four-dimensional notations have been introduced;
x[(t,x) and*d4x[* t I

tFdt*d3x. d/dJi(x) signifies the func-

tional derivative defined as

dJi~x!

dJj~x8!
5d i jd

4~x2x8!. ~2.8!

Here d4(x) is the four-dimensionald function. Then the
physically observed expectation value ofÔ(t,x) with t.t I is
given by

f~x![^Ô~x!&5
dW@J1 ,J2#

dJ1~x!
U
J15J250

52
dW@J1 ,J2#

dJ2~x!
U
J15J250

. ~2.9!

The equation of motion off(x) is obtained as follows. We
note here the inverted relation of~2.7!,

dG@f1 ,f2#

df i~x!
5~21! iJi~x! ~ i51,2!, ~2.10!

which comes from the definitions~2.6! and~2.7! @see~A6!#.
In ~2.4! we have assumed thatJ1,2 are fictitious sources,
which are made to vanish at the end. In case a physical
source coupled toÔ is really present, the artificial source
term Ji has to be set to a physical source
J(x):J1(x)5J2(x)5J(x). If the sourceJ(x) is absent, we
are considering the case where the nonequilibrium process is
realized because the initial density matrix is not equal to the
equilibrium distribution. Let us consider the latter case for
simplicity. Then we are led to the equation of motion of
f(x):

dG@f1 ,f2#

df1~x!
5

dG@f1 ,f2#

df2~x!
50. ~2.11!

The solution to~2.11! satisfiesf1(x)5f2(x)5f(x) be-
cause of the symmetry under 1↔2. Therefore we can use
another type of equation of motion,

05
dG@f1 ,f2#

df1~x!
U
f1~x!5f2~x!5f~x!

. ~2.12!

This has a similar form to the equation of motion for the
coordinate variableq in classical analytical dynamics, which
is obtained by the stationary condition on the action func-
tional I @q#; dI @q#/dq(t)50. Because of this analogy,G is
also called the effective action.

We recall here the relation between the equation of mo-
tion and its solution for the case of a nonvanishing physical
source, J15J25JÞ0. If we set J15J25J in ~2.9! and
f15f25f in ~2.10!, we get

f~x!5
dW@J1 ,J2#

dJ1~x!
U
J15J25J

, ~2.13!

2J~x!5
dG@f1 ,f2#

df1~x!
U
f15f25f

, ~2.14!

which are the solution and the equation of motion under the
presence of the physical sourceJ(x), respectively. Actually
we get ~2.14! by solving ~2.13! with respect toJ(x), i.e.,
inversion of ~2.13!. Several important relations involving
W@J1 ,J2# and G@f1 ,f2# are summarized in Appendix B.
When the initial density matrix is of the equilibrium form
r̂ I5exp(2bĤ), it is convenient to introduce another source
J3 in the third imaginary time path. This enables one to study
the connection with the equilibrium free energy and is dis-
cussed in Appendix C.

B. How to calculateG†f1 ,f2‡

The evaluation ofW@J1 ,J2# is based on the definition
~2.4!. In the case of perturbative expansion, for example,
there arises a 232 propagator matrix@7# specific to the non-
equilibrium processes. When the initial correlation is taken
into account and if the initial density matrix is assumed to be
the equilibrium one, then the propagator becomes 333 @12–
14#. The problem is how to calculateG@f1 ,f2# by perform-
ing the Legendre transformation~2.6!. For the zero tempera-
ture and equilibrium nonzero temperature cases, the
diagrammatical rule has been known@15,16# for several
types of operatorsÔ. The results are usually given in the
form of the loop expansion.

Up until now there have been three ways of performing
the Legendre transformation to get this result: the functional
method, the method relying on the combinatorics of the
graphs, and the inversion method. Among others, the inver-
sion method@17# consists of taking perturbatively the inverse
of the relationf5f@J# to getJ5J@f#, which is the essen-
tial part of the Legendre transformation. This type of ma-
nipulation can readily be applied to the nonequilibrium case.

III. ON-SHELL EXPANSION OF G†f1 ,f2‡

SinceG@f1 ,f2# plays the analogous role of the action
functional in classical analytical dynamics, let us consider
first a classical mechanical system with the coordinatesqi
( i51–N). The Lagrangian is written asL(qi ,q̇i) and in the
time intervalt I<t<tF , the action is defined to be

I @qi #5E
t I

tF
dt L„qi~ t !,q̇i~ t !…. ~3.1!

The stationary equation for the action functional is the Euler-
Lagrange equation of motion, which is obtained by writing
qi(t)5qi

(0)(t)1dqi(t) and requiring that the actionI @qi # is
stationary forqi

(0)(t):

05
dI @qi #

dqi~ t !
5

]L

]qi~ t !
2

d

dt

]L

]q̇i~ t !
. ~3.2!
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Here the derivatived/dqi(t) is the functional one defined in
~2.8! and the variation is assumed to satisfy the boundary
conditionsqi(t I)5qi(tF)50.

If qi
(0)(t) is a solution, i.e., a physically realizable trajec-

tory, thenqi
(0)(t)1dqi(t) is not. This is because the varia-

tion dq is the one to be taken for the purpose of searching for
the physical trajectory. In this sense we calldq the unphysi-
cal ~or off-shell! variation.~The terminology ‘‘off shell’’ will
become clear when we discuss the field theory.!

Now consider another physical trajectory that lies near
qi
(0)(t) and write it asqi(t)5qi

(0)(t)1Dqi(t). In this case
bothqi

(0)(t) andqi
(0)(t)1Dqi(t) satisfy the equation of mo-

tion so thatDqi(t I) andDqi(tF) are not zero in general. The
variationDqi(t) is called the physical~or on-shell! variation
since it leads to the physically realizable trajectory. The
equation satisfied byDqi(t) is obtained as follows:

05S dI @qi #

dqi~ t !
D
q5q~0!1Dq

5S dI @q#

dqi~ t !
D
q5q~0!

1(
j51

N E
t I

tF
dt8S d2I @q#

dqi~ t !dqj~ t8! D
q5q~0!

3Dqj~ t8!1•••. ~3.3!

Sinceqi
(0)(t) is a stationary solution andDqi(t) is assumed

to be a small quantity, the equation for the small deviation
Dqj (t) is

(
j51

N E
t I

tF
dt8S d2I @q#

dqi~ t !dqj~ t8! D
q5q~0!

Dqj~ t8!50. ~3.4!

The solution of the above equation describes a small oscilla-
tion aroundqi

(0)(t). Equation~3.4! can be looked upon as an
eigenvalue equation in matrix form with rows and columns
specified by (i ,t) and (j ,t8). Therefore we expect a discrete
set of solutions, i.e., the modes of oscillations. Equation~3.4!
is therefore called the mode determining equation~on-shell
equation in the case of field theory!. The higher order equa-
tions denoted by dots in Eq.~3.3! determine the scattering
among the various modes of small oscillation thus obtained.

In field theoretical systems and for the zero temperature
case, we have already shown@1–4# that the complete paral-
lelism between the classical action and the effective action
persists and that the formal scheme of on-shell expansion

produces the physical quantities such as scattering matrix
(S matrix! elements among the excitation modes. These
modes themselves are determined by the lowest equation of
the on-shell expansion.

The purpose of the present section is to apply the same
technique to the nonequilibrium generating functional
G@f1 ,f2#, generalizing the discussions to the field theoreti-
cal case. Consider a system described by the Hermitian sca-
lar field f̂(x). We have in mind the phonon field, photon
field, or the Yukawa meson~Klein-Gordon! field, etc. Let us
introduce the canonically conjugate momentum fieldp̂(x).
Then the standard Hamiltonian has the structure

Ĥ5E d3x$ 1
2 p̂~x!21 1

2 f̂~x!v2~2¹!f̂~x!1HI@f̂#%.
~3.5!

Herev(2¹) is the bare dispersion relation of the fieldf
andHI represents the unharmonic interaction term. The cor-
responding Lagrangian or the action functionalI @f# is given
as (] t[]/]t)

Î @f#5E d4x$ 1
2 @] tf̂~x!#22 1

2 f̂~x!v2~2¹!f̂~x!2HI@f̂#%.

~3.6!

In the Heisenberg representation, the following relations
hold:

p̂~ t,x!5] tf̂~ t,x!, @p̂~ t,x!,f̂~ t,y!#5
1

i
d3~x2y!.

~3.7!

Now take the operatorf̂(x) as Ô. Then we are going to
study the expectation value

^f̂~x!& t5Trr̂ I Û
†~ t,t I !f̂~x!Û~ t,t I !. ~3.8!

The solution to ~2.11! is written as f1(x)5f2(x)
[f (0)(x). Then~2.12! takes the form

S dG@f1 ,f2#

df1~x! D
f15f25f~0!

50. ~3.9!

Let us perform our on-shell expansion. For this purpose
we expand G@f1 ,f2# around f (0), writing
f15f25f (0)1Df:

05S dG@f1 ,f2#

df1~x! D
f15f25f~0!1Df

5S dG

df1~x! D
0

1 (
i51,2

E
t I

`

d4yS d2G

df1~x!df i~y! D
0

Df~y!1
1

2! (
i1 ,i251,2

E
t I

`

d4y1 d
4y2S d3G

df1~x!df i1
~y1!df i2

~y2! D
0

3Df~y1!Df~y2!1•••. ~3.10!

Here ()0 implies that () is evaluated atf5f (0) and we note the sum overi51,2, which is specific to the nonequilibrium case.
We further expandDf as

Df~x!5Df~1!~x!1Df~2!~x!1Df~3!~x!1•••, ~3.11!
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assuming thatDf (n) is of the order (Df (1))n. Then we get our on-shell expansion by requiring that~3.10! holds in each power
of Df (1). The zeroth order vanishes because of~3.9! and for the first order we get the mode determining equation

05E
2`

`

d4y„G11
~2!~x,y!1G12

~2!~x,y!…0Df~1!~y!,

~3.12!

G i j
~2!~x,y![

d2G

df i~x!df j~y!
.

Here and in what follows we taket I→2` for simplicity. Equation~3.12! is the generalization of the mode determining
equation of the small oscillation~3.4! to the nonequilibrium system.

Now the following identities are noted, which are functional analogs of~B4! and ~B5!:

(
i2

E d4y G i1i2
~2! ~x,y!~21! i21 i311Wi2i3

~2! ~y,z!5d i1 ,i3d
4~x2z!, ~3.13!

(
i , j51,2

„Wij
~2!~x,y!…J15J2

50, ~3.14!

Wij
~2!~x,y![

d2W

dJi~x!dJj~y!
.

By using these relations we can derive

2d4~x2z!5E d4y„G11
~2!~x,y!1G12

~2!~x,y!…„W11
~2!~y,z!1W12

~2!~y,z!…uJ15J25J . ~3.15!

Indeed this relation follows by choosingi 15 i 351 in ~3.13! and by the repeated use of~3.14!. However,W11
(2)1W12

(2) is the
retarded Green’s function,

„W11
~2!~y,z!1W12

~2!~y,z!…J15J25J[„WR
~2!~y,z!…J5

i

\
u~y02z0!^@f̂~y!,f̂~z!#&J , ~3.16!

therefore the relation (G11
(2)1G12

(2))052(WR
(2))J50

21 implies that Eq.~3.12! determines the pole ofWR
(2) . For constantf (0),

„G i j
(2)(x,y)…0 is a function ofx2y; therefore in Fourier space~3.12! takes the form

„G11
~2!~v,p!1G12

~2!~v,p!…0Df~1!~v,p!50. ~3.17!

The dispersion relationv5v(p) can be fixed by requiring that we have nonvanishingDf (1) and in this caseDf (1) has the
support on the shell defined byv5v(p) in four-dimensional space ofp5(v,p). This is the reason we call~3.12! the on-shell
equation and our scheme the on-shell expansion. Because the Hamiltonian or the action given in~3.6! is symmetric under
v↔2v, G (2)(v,p) is a function ofv2. Therefore we can write in the vicinity of the shell

„G11
~2!~v,p!1G12

~2!~v,p!…05Z21
„v22v2~p!…, ~3.18!

whereAZ is the wave function renormalization factor, i.e., the inverse of the residue of the pole ofWR
(2) , of the corresponding

mode. Inx space, by using the notationpx5vt2p•x,

„G11
~2!~x2y!1G12

~2!~x2y!…05
1

~2p!4
E d4p exp~2 ip~x2y!#„G11

~2!~v,p!1G12
~2!~v,p!…0

52Z21
„] t

21v2~2¹x!…d
4~x2y![2Z21f ~]x!d

4~x2y!. ~3.19!

Here, as indicated, the differentiation applies to the coordinatex. There are two independent solutions to~3.17!, each having
undetermined constantsC(6):

Df~1!~v,p!5C~p!d„v22v2~p!…5
C„v5v~p!,p…

2v~p!
d„v2v~p!…1

C„v52v~p!,p)

2v~p!
d„v1v~p!…. ~3.20!

Let us define
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C~6 !~p!5
C„v56v~p!,6p…

~2p!4A2v~p!
. ~3.21!

Then, in the coordinate space we have

Df~1!~x!5
1

~2p!4
E d4p exp~2 ipx!Df~1!~v,p!5E d3p

A2v~p!
@C~1 !~p!exp~2 ip ~0!x!1C~2 !~p!exp~ ip ~0!x!#, ~3.22!

wherev(p)5v(2p) is assumed andp(0)x5v(p)t2p•x. We will see below thatDf (1)(x) is the wave function of the
excited mode. This is shown by deriving another form ofDf (1)(x) using the technique of formula due to Lehman, Symanzik,
and Zimmerman~LSZ! @18,19#. @HereDf (1)(x) is a simple plane wave since we have takenf̂(x) as Ô. If the composite
operator f̂(x)f̂(y), for example, is adopted thenDf (1)(x) has the dependence on the internal coordinate besides
exp(ip(0)x).#

For the second or higher orders the required relations are

(
i51,2

E d4y„G1i
~2!~x,y!…0Df~2!~y!1

1

2!(i1 ,i2 E d4y1 d
4y2„G1i1i2

~3! ~x,y1 ,y2!…0Df~1!~y1!Df~1!~y2!50, ~3.23!

(
i51,2

E d4y„G1i
~2!~x,y!…0Df~3!~y!1

1

2!(i1 ,i2 E d4y1 d
4y2„G1i1i2

~3! ~x,y1 ,y2!…0„Df~1!~y1!Df~2!~y2!1Df~2!~y1!Df~1!~y2!…

1
1

3! (
i1 ,i2 ,i3

E d4y1 d
4y2 d

4y3„G1i1i2i3
~4! ~x,y1 ,y2 ,y3!…0Df~1!~y1!Df~1!~y2!Df~1!~y3!50, ~3.24!

etc. After some calculations~see Appendix D!, Df (n) can be expressed byDf (1) in a compact multiretarded form:

Df~n!~x!5
1

n! E d4y1•••d
4yn d

4z1•••d
4zn~WR

~n11!!0~x,y1 , . . . ,yn!~WQ R
~2!!0

21~y1 ,z1!~WQ R
~2!!0

21~y2 ,z2!

3•••~WQ R
~2!!0

21~yn ,zn!Df~1!~z1!•••Df~1!~zn!, ~3.25!

WR
~n11!~x,y1 , . . . ,yn![ (

i1 , . . . ,i n
S dn11W

dJ1~x!Ji1~y1!•••Jin~yn!
D
J15J2

5S i\ D nTrS r̂ I (
P$y1 , . . . ,yn%

u~ tx ,ty1, . . . ,tyn!@†•••@f̂~x!,f̂~y1!#,•••‡,f̂~yn!#

[S i\ D n^R„f̂~x!f̂~y1!•••f̂~yn!…&, ~3.26!

u~ tx ,ty1, . . . ,tyn!5u~ tx2ty1!u~ ty12ty2!•••u~ tyn21
2tyn!.

Here we have defined̂&5Trr̂ I() and(P$y1 , . . . ,yn%
implies the sum over all possible permutations of$y1 , . . . ,yn%. Equation

~3.25! expresses the fact that amongn11 external linesn lines are amputated by the retarded Green’s function. The arrow on
WR

(2) implies that it operates to the left, i.e., (WQ R
(2))0

21 first amputates the pole ofWR
(n11) and then we multiply

Df (1)
•••Df (1).

Now the above formulas are rewritten by the operator form through the reverse use of the LSZ reduction technique@18,19#
and we get another physical interpretation of our expansion scheme. In particular infinite series of on-shell expansion can be
summed up into a coherent state of the excitation mode. Consider firstDf (1)(x). We show that it is related to the wave
function of the excited mode. For this purpose let us rewriteDf (1)(x) using ~3.15! and ~3.19!;

Df~1!~x!52E d4yE d4y8 Df~1!~y! (
i51,2

G1i
~2!~x2y8! (

j51,2
W1 j

~2!~y82y! ~3.27!

5Z21E d4y Df~1!~y! f ~]W x!i ^R„f̂~x!f̂~y!…&. ~3.28!
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We have used the fact that since the factorDf (1)(y) is present we can use the expression~3.19! for G (2) in ~3.27!. The arrow
indicates that it operates to the right. Since we are assuming the homogeneous system,^R„f̂(x)f̂(y)…& is a function of
x2y so thatf (]W x)5 f (]W 2y)5 f (]W y) @becausef is the even function of its argument, see~3.19!#. Now remembering the fact that
Eq. ~3.12! is equivalent to

f ~]W y!Df~1!~y!50, ~3.29!

the partial integration over*d4y in ~3.28! is performed. The boundary term at spatial infinity is assumed to vanish by utilizing
the wave packet regularization for the plane wave. We keep the boundary term att56` by using the identity

A] t
2B5] t~A]J tB!1~] t

2A!B, A]J tB[A] tB2~] tA!B. ~3.30!

By ~3.29! we get, using the notationy5(y0,y), the following expression. Note that we have takent I52`:

Df~1!~x!5Z21E d4y ]y0(Df~1!~y! ]Jy0i ^R„f̂~x!f̂~y!…&)5 iZ21S lim
y0→`

2 lim
y0→t I

D E d3y Df~1!~y! ]Jy0^R„f̂~x!f̂~y!…&.

~3.31!

We recall here that limy0→` makes a vanishing contribution because of the presence of theu function inWR
(2) and also that at

equal time the fieldsf̂(t,x) commute among themselves. Thus we arrive at

Df~1!~x!5^@f̂~x!,Â#&, ~3.32!

Â52 iZ21E d3y$Df~1!~y!p̂~y!2„]y0Df~1!~y!…f̂~y!%y05t I
. ~3.33!

In momentum representationÂ takes a simple form. Let us
expandf̂ and p̂ in terms of the creation and annihilation
operators:

f̂~ t I ,x!5
1

~2p!3/2
E d3p

A2v~p!
@ â~p!e2 ip~0!xI

1â~p!†eip
~0!xI#, ~3.34!

p̂~ t I ,x!5
2 i

~2p!3/2
E d3pAv~p!

2
@ â~p!e2 ip~0!xI

2â~p!†eip
~0!xI#, ~3.35!

wherep(0)xI5v(p)t I2p•x and

@ â~p!,â~k!†#5d3~p2k!, ~3.36!

while other commutators are zero. Now inserting~3.22!,
~3.34!, and~3.35! into the definition~3.33!, we get

Â5a†2a, ~3.37!

a~†![Z21~2p!3/2E d3p C~7 !~p!â~p!~†!. ~3.38!

At this point we assume the initial density matrix to be the
equilibrium one:r̂ I5exp(2bĤ). Then r̂ I does not change
the number of particles corresponding toa or a†. This is
seen as follows. Sincet I52`, f̂(t I ,x) corresponds to in-
field of the LSZ formalism andâ(†) annihilates or creates the
mode, which is an eigenstate of the total Hamiltonian. Recall
here that it is defined by the pole ofWR

(2) .

Now Df (1)(x) can be looked upon as a linear combina-
tion of the wave function of the state~which is not normal-
ized! containing one excited mode annihilated or created by
a or a†. In order to see this, let us write~3.32! explicitly in
the number representation using~3.37!:

Df~1!~x!5(
n

r I nn^nu@f̂~x!,a†2a#un&

5(
n

r I nn$2An^nuf̂~x!un21&

1An11^nuf̂~x!un11&1An11^n11uf̂~x!un&

2An^n21uf̂~x!un&%. ~3.39!

Here the summation over the indices other thann is sup-
pressed and the following notations have been used:

aun&5Anun21&, a†un&5An11un11&.

The above result is the generalization of the zero temperature
case to finite temperature where the excited modes and the
thermal background are present at the same time. Indeed we
can show that~3.39! reduces to the known expression if we
keep only the ground stateu0& in the sum. Using
au0&5^0ua†50, we see thatDf (1)(x) is written as

Df~1!~x!5^0uf̂~x!u1&1c.c.,

where c.c. implies the complex conjugate. The above expres-
sion is precisely the wave function of the mode for the case
of Hermite field.

Consider nextDf (2)(x), which can be handled in a simi-
lar manner:
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Df~2!~x!5E d4y1E d4y2 iZ
21Df~1!~y1! f ~]W y1!iZ

21Df~1!~y2! f ~]W y2!^R„f̂~x!f̂~y1!f̂~y2!…&. ~3.40!

The integration overy2 is done first. Following the same process as we have done above, the partial integration leads to

E d4y2iZ
21Df~1!~y2! f ~]W y2!^R„f̂~x!f̂~y1!f̂~y2!…&5 iZ21E d4y2 ]y

2
0~Df~1!~y2! ]Jy

2
0^R„f̂~x!f̂~y1!f̂~y2!…&!

5 iZ21E d3y2S lim
y2
0→`

2 lim
y2
0→t I

DDf~1!~y2! ]Jy
2
0^R„f̂~x!f̂~y1!f̂~y2!…&

52 iZ21E d3y2 Df~1!~y2! ]Jy
2
0^@R„f̂~x!f̂~y1!…,f̂~y2!#&uy

2
05t I

5^@R„f̂~x!f̂~y1!…,Â#&. ~3.41!

The remaining integration ofy1 can be done similarly with
the result

Df~2!~x!5
1

2!
^†@f̂~x!,Â#,A‡&. ~3.42!

Looking at the above expressions, it is an easy task to guess
the results for generalDf (n)(x). In fact by using the math-
ematical induction technique, we can show the following
form:

Df~n!~x!5
1

n!
^†@•••†@f̂~x!,Â#,Â‡,•••#,Â‡&. ~3.43!

Now it is a simple matter to sum up overn and we get

Df~x!5 (
n51

`

Df~n!~x!

5Tr@ r̂ Iexp~2Â!f̂~x!exp~Â!#

5Tr@exp~Â!r̂ Iexp~2Â!f̂~x!#. ~3.44!

Usually the initial density matrix is written withp̂(x) and
f̂(x) so that, by noting the definition of~3.33! of Â, we get
the c-number shift of the initial variables:

exp~Â!r̂ I„p̂~x!,f̂~x!…exp~2Â!

5 r̂ I„p̂~x!2pc~x!,f̂~x!2fc~x!…, ~3.45!

pc~x!5Z21
„]x0Df~1!~x!…t I, ~3.46!

fc~x!5Z21
„Df~1!~x!…t I. ~3.47!

The initial coordinate is shifted as it should:

Df~ t I ,x!5Tr„r̂ I$f̂~ t I ,x!1@f̂~ t I ,x!,2 iZ21Â#%…,

5Tr„r̂ I$f̂~ t I ,x!1~2 iZ21!iDf~1!~ t I ,x!%…,

~3.48!

5Tr„r̂ If̂~ t I ,x!…1Z21Df~1!~ t I ,x!. ~3.49!

In the momentum representation,

exp~Â!r̂ I„â~p!,â†~p!…exp~2Â!

5 r̂ I„â~p!2C̃~1 !~p!,â†~p!2C̃~2 !~p!…, ~3.50!

C̃~6 !~p![Z21~2p!3/2C~6 !~p!.

Note that exp(2Â) coincides with the familiar operator,
which brings about the coherent state.

Now we have at hand a way of searching for the correct
condensed state; varyC̃(6)(p) in such a way thatDf(x)
becomes constant in time. ThenC̃(6)(p) is determined and
we get the density matrix corresponding to the condensed
state. This is illustrated for superfluid4He in the next sec-
tion. ~Application of this technique to other real physical
systems is under way.!

IV. SUPERFLUID 4He: AN EXAMPLE

Let us exemplify the formulas obtained above taking the
system of 4He. Here the complex~i.e., non-Hermite! field
operatorĉ(x) of 4He has a nonvanishing expectation value
below the temperatureTc corresponding to the onset of the
Bose condensation. The model Hamiltonian is the usual one
@20#:

Ĥ5E d3x ĉ†~x!S 2
\2

2m
¹22m D ĉ~x!

1
1

2E d3x d3y ĉ†~x!ĉ†~y!U0~x2y!ĉ~y!ĉ~x!,

U0~x2y!5U0~y2x!, @ĉ~ t,x!,ĉ†~ t,y!#5d3~x2y!.
~4.1!

HereU0(x2y) is the assumed repulsive potential of the he-
lium atom andm the chemical potential. In the following we
take, for simplicity, the local form of the potential;
U0(x2y)5U0d

3(x2y). Below we setf (†)(x)[^ĉ (†)(x)&
and introduce the notations
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ĉa[~ĉ†,ĉ !, ĉ†a[~ĉ,ĉ†!, fa5~f†,f!,

f†a5~f,f†! ~a51,2!. ~4.2!

~The superscripta has nothing to do with the subscripti or
j , which discriminates the branch of the two real time paths.!
We need two kinds of sourcesJi , J̄i and define

ĤJi
~ t !5Ĥ2E d3x$Ji~x!ĉ†~x!1 J̄i~x!ĉ~x!%. ~4.3!

In the above definition,i51,2,3. If i53, we are assuming
the equilibrium initial distributionr̂ I5exp(2bĤ) and the
time variable takes the imaginary value;t5t I2 i t, with
0<t<\b.

Here we introduce the notion of the complex contour of
the time integration in order to write various formulas in a
compact way. We are going to generalize the double path
formalism due to Schwinger@6#, Keldysh @7#, Chou et al.
@10#, to the three time paths including the imaginary time
path. See for this purpose Niemi and Semenoff@9#, Wagner
@13#, and Fukuda and co-workers@14#. The contour time
integral *Cdt extends over the contourC, which runs as
C1→C2→C3 ~see Fig. 1!. Each path is defined to be
C1 :t I→tF and C2 :tF→t I ~return path! C3 :t I→t I2 ib\
~imaginary time path!. The contour time ordering operator
TC orders the time sequence according to its location on the
contour. Furthermore the following notation is used:

J~ t !5Ji~ t ! if t is on Ci ~ i51,2,3!. ~4.4!

With these notations and assuming the equilibrium initial
distribution, we can write

exp
i

\
W@J1 ,J2 ,J3#[exp

i

\
W@J#

5Tr TCexpS 2
i

\ECdt ĤJ~ t ! D , ~4.5!

where ĤJ(t) is equal toĤJi
(t) given in ~4.3! if t is on Ci

with i51,2,3, respectively. The contourd function is intro-
duced as

E
C
dtdC~ t2t8! f ~ t !5 f ~ t8!. ~4.6!

Similarly the contouru function and the contour functional
differentiation are defined:

uC~ t2t8!5E
C

t

dt9dC~ t92t8!, ~4.7!

d f ~ t !

d f ~ t8!
5dC~ t2t8!. ~4.8!

As for the Legendre transformedG, the formula of the loop
expansion has been established by several authors@15,16#
but these works are limited to the zero temperature case or to
the equilibrium systems. The nonequilibrium case where the
imaginary time path is absent has been discussed by Chou
et al. @10#. We use in the following the contour time path
defined above in the case where the imaginary time path is
needed. It turns out that the use of the contour integral makes
it easy to generalize the known results to the nonequilibrium
case.

A. On-shell expansion

1. The case Oˆ 5ĉa

Let us take a stationary homogeneous solution
fa[^ĉa(x)&. ~For T<Tc , there are two solutions.! For the
moment we consider onlyJ1 andJ2 assumingJ350. Then
the on-shell condition takes the form

„i\] t1V~2¹!…Df~1!~x!50,

„2 i\] t1V~2¹!…Df†~1!~x!50. ~4.9!

HereV(2¹) is the complete dispersion relation including
the corrections due to the interaction. The solution in Fourier
space is written as

Df~†!~1!5E d3p C~6 !~p!e~7 ip~0!x!, ~4.10!

wherep(0)x5V(p)t2p•x. In the formula~3.25!, owing to
the presence of the on-shell projectionDf (1), (WR

(2))21 can
be replaced by its pole part:

~WR
~2!!c†c

21
~x,y!52Z21

„i\] tx1V~2¹x!…d
4~x2y!,

~4.11!

~WR
~2!!cc†

21
~x,y!52Z21

„2 i\] tx1V~2¹x!…d
4~x2y!.

HereAZ is the wave function renormalization factor of the
4He field.
Inserting ~4.9! and ~4.11! into ~3.25!, the reverse use of

the LSZ reduction formula, as was done in the previous sec-
tion, leads to the following expression, which has the
n-fold commutator:

Dfa,~n!~x!5
1

n!
^@†•••@ĉa~x!,Â#,•••‡,Â#&,

Â[Z21E d3y„Df~1!~y!ĉ†~y!2Df†~1!~y!ĉ~y!…y05t I
.

~4.12!

FIG. 1. Contour pathsC1 ,C2 ,C3 .
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Let us rewriteÂ by expandingĉ (†) in terms of the creation
or annihilation operator:

ĉ~†!~ t I ,x!5
1

~2p!3/2
E d3p â~p!~†!e7 ip~0!xI, ~4.13!

where p(0)xI5V(p)t I2p•x. Now inserting ~4.10! and
~4.13! into the definition~4.12!, we get

Â5a†2a, ~4.14!

a~†![Z21~2p!3/2E d3p C~6 !~p!â~p!~†!. ~4.15!

Assuming the equilibrium initial density matrix, we have the
following expression for the wave function analogous to
~3.39!:

Df~†!~1!~x!5(
n

r I nn^nu@f̂~†!~x!,a†2a#un&

5(
n

r I nn$2An^nuf̂~†!~x!un21&

1An11^nuf̂~†!~x!un11&

1An11^n11uf̂~†!~x!un&

2An^n21uf̂~†!~x!un&%. ~4.16!

We can sum upDfa,(n)(x) into an exponential form to get
Dfa(x) as follows:

Dfa~x!5 (
n51

`

Dfa,~n!~x!5Tr„r̂ I@ĉ,ĉ†#e2Âĉa~x!eÂ…

~4.17!

5Tr„r̂ I@ĉ8,ĉ8†#ĉa~x!…. ~4.18!

ĉ85ĉ2Z21Df~1!~ t I !, ĉ8†5ĉ†2Z21Df†~1!~ t I !.

Equation ~4.18! tells us that Dfa(x) is the same as
^ĉa(x)& but with the initial operator insider̂ I shifted by the
amount2Z21Dfa,(1)(t I ,x), which is ac number. This is
reminiscent of the shift of boundary conditions under the
on-shell variation in classical analytical dynamics; see the
discussion preceding~3.3!. However, only the shift of the
initial value comes in the formula here compared with the

case of the classical mechanics where the change ofq(t) at
both t5t I and t5tF appear. The reason is that we have a
closed time path for the case of finite temperature while the
time flows straight fromt52` to 1` in the zero tempera-
ture case.

2. Identity involvingDf

Below we consider the relation of the constant solution of
the nonequilibrium equation of motion and the stationary
solution of the equilibrium free energy by deriving a func-
tional identity. For this purpose it is convenient to introduce
the probe J3 into the imaginary time axis and define
W@J1 ,J2 ,J3#. ~See Appendix C for the general discussion of
W or G of three variables.! In the following we do not per-
form the Legendre transformation inJ3 , therefore
G@f1 ,f2# is the Legendre transformation ofW@J1 ,J2 ,J3# in
J1 andJ2 only andJ3 is assumed to be a parameter in this
transformation. FurthermoreJ3 is taken to be a constant;
J3 does not containx. For notational simplicityJ3 is not
written explicitly below forG@f1 ,f2#. With this notation,
we have the relation, by~A13!,

dG@f1 ,f2#

df1~x!
5

dG@f1 ,f2 ,f3#

df1~x!
. ~4.19!

Now take the uncondensed solutionfa(0)50 and assume
that Z21Df (†)(t I ,x)[C(†)5const. By this choice we are
expanding around the normal solution and summing up the
unstable modes excited above the uncondensed solution.
Then the naive diagrammatical consideration can be applied
to ~4.18! using the Feynman rule given in Appendix E. We
write ~4.18! as

Dfa~x!5Tr„r̂ I~ ĉ2C,ĉ†2C†!ĉa~x!…. ~4.20!

In Fig. 2, Eq. ~4.20! is illustrated. The diagram giving a
nonvanishing contribution toDf (†)(x) contains at least one
C(†) and several lower-order diagrams are shown in Figs. 3,
4, and 5 forDf(x). The point x is denoted by 1 in the
figure but it can be 2 or1 since^ĉ1(x)&5^ĉ2(x)& so that
^ĉ (1)(x)&5^ĉ1(x)&5^ĉ2(x)&. @ See ~C5! for the defini-
tion.# At each vertex the number 1 or 2 or 3 is assigned to
indicate the path to which it belongs. The line represents one

FIG. 2. Contour pathsC1 ,C2 ,C3 corresponding to~4.20!.

FIG. 3. The zeroth-order diagram ofDf(x).

FIG. 4. The first-order diagrams ofDf(x).
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of the six propagators shown in Appendix E. Let us evaluate
the first order diagram Fig. 3; the vertex at the end of the line
is 2mC and the line is the zero momentum limit of
Ḡ(2)(x;t,y); see~E5!. We integrate this quantity by apply-
ing *0

\bdt and the result of this process is

e2 ivk50~ t2t I !/~2m!511E
t I

`

d4y
1

i\
DR~x2y!.

Thus the value of Fig. 3 is

C1E
t I

`

d4y
1

i\
DR~x2y!~2mC!.

In Figs. 4 and 5, the one-particle irreducible part is enclosed
by dotted lines. By one-particle irreducible part, we mean a
part of a graph that is not separated into two parts if we cut
any one of the propagators contained in it. It is easy to con-
vince oneself that the one-particle reducible parts sum up to
Df itself but it is nowx independent. Thus, summing up all
the diagrams of higher order, we arrive at the following form
of Df(x);

~4.21!

HereDR(x2y) is given in Appendix E. In~4.21! (U0
im-

plies the sum over the graphs that contain at least oneU0 and
we notice that

mC5S dG tree

df1
†~x! D

f15f25C

.

In the above expressions we have separatedG as the sum of
the free part and the part due to interactions
G5G free1G int . In this way we can write

Df~x!5C2E d4y
1

i\
DR~x2y!F S dG free

df1
†~y!D

f15f25C

1S dG int

df1
†~y!D

f15f25Df

G . ~4.22!

Up until now we did not write theJ3 dependence explicitly
but J3 has to be set to zero to get back to the original theory.
Now we write ~4.22! in terms of G@f1 ,f2 ,f3#. Since
J350 implies dG/df350 and since the formula~4.19!
holds for the free part and the interacting part separately, Eq.
~4.22! is transformed into

Df~x!5C2E d4y
1

i\
DR~x2y!F S dG free

df1
†~y!D

~* !

1S dG int

df1
†~y!D

~** !

G , ~4.23!

whereG representsG@f1 ,f2 ,f3# and (* ) and (** ) imply

~* !:f15f25C,
dG

df3
50,

~** !:f15f25Df,
dG

df3
50,

respectively. Now suppose thatf15f25f35C is a solu-
tion to

dG

df1
5

dG

df2
5

dG

df3
50,

then by the property~C13!, f5C coincides with the station-
ary solution to the equilibrium free energy;
dGb /dfuf5C50. If we put this solution into~4.23!, then the
term inside@ # vanishes andDf(x) becomesC consistently.
Thus we have shown that the true value of the condensation
C is calculable by requiringDf(x) to be time independent.

3. The case Oˆ 5ĉaĉa

Next the pairing condensation is discussed. In superfluid
4He, it has been pointed out that not onlyca but also
caca may condense@21#. There has been controversy in this
case concerning the existence or the absence of the gap in the
excitation spectrum. But the gap can be shown to be absent
by our formalism; see the arguments at the end of Sec. IV B.

Here the result of the application of the on-shell expan-
sion to the pairing theory is briefly summarized below. We
will see that in our formalism the Bogoliubov angle naturally
comes in. For this purpose the pairing is taken up in momen-
tum representation̂ĉ(2p)ĉ(p)&, ^ĉ†(p)ĉ†(2p)& by add-
ing the source term to the Hamiltonian separately for two
time paths as follows:

FIG. 5. The second-order diagrams ofDf(x).
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ĤJi
5Ĥ2E d3p„Jic†c†~ t,p!ĉ†~p!ĉ†~2p!

1Jicc~ t,p!ĉ~2p!ĉ~p!….

We do not write theJ3 dependence and the argument goes
through in a similar way as in the case of^ĉa&. We first
define the generating functionalW as before and introduce
the notations fora51,2:

Ji
a~ t,p!5„Jic†c†~ t,p!,Jicc~ t,p!…,

~4.24!

F i
a~ t,p!5„F i

†~ t,p!,F i~ t,p!…5
dW

dJi
a~ t,p!

.

ThenG is introduced as

G@F1
a ,F2

a#5W@J1
a ,J2

a#2(
i ,a

E dtE d3p Ji
a~ t,p!F i

a~ t,p!.

~4.25!

The equation that governs the time development of the order
parameter is written as

S dG

dF1
a~ t,p! D

F15F25F

50. ~4.26!

On-shell expansion around the uncondensed solution
F (†)(0)50 is obtained by writing

Fa~ t,p!5Fa~0!1DFa~ t,p!,

where the variables without the subscripti are the physical
quantities that take the same value fori51 and 2:

Fa5~F†,F!, F~ t,p!5^ĉ~ t,2p!ĉ~ t,p!&,

F†~ t,p!5^ĉ†~ t,p!ĉ†~ t,2p!&.

ThenDFa(t,p) is obtained, after some algebra, as follows:

DFa~ t,p!5DFa,~1!~ t,p!1DFa,~2!~ t,p!1•••

5TrHeE d3qÂ2~ t I ,q!r̂ I~ ĉ,ĉ†!

3e2*d3qÂ2~ t I ,q!F̂a~ t,p!J ,
5Tr$r̂ I~ ĉ8,ĉ8†!F̂a~ t,p!%.

Here the following notations are employed:

ĉ85coshukĉ~k!2exp~ i argwk!sinhukĉ
†~2k!,

ĉ8†5coshukĉ
†~k!2exp~ i argwk

†!sinhukĉ~2k!,

Â2~ t I ,q!5Z21@DF~1!~ t I ,q!ĉ†~ t I ,q!ĉ†~ t I ,2q!

2DF†~1!~ t I ,q!ĉ~ t I ,2q!ĉ~ t I ,q!#,

wk5Z21@DF~1!~ t I ,k!1DF~1!~ t I ,2k!#,uk5uwku.

The angleuk is nothing but the Bogoliubov angle, which is
determined by requiring thatDF i(t,p) is independent oft.
As in the case of̂ ĉa&, this coincides with the condition of
minimizing equilibrium free energy.

We summarize our findings of this section. On-shell ex-
pansion naturally changes the initial density matrix into

eCĉ†2C†ĉr̂ Ie
2Cĉ†1C†ĉ, eu~ĉ†ĉ†2ĉĉ!r̂ Ie

u~2ĉ†ĉ†1ĉĉ!,

which causes the shift of the operatorĉ of the initial state by
c numberC(†) or the rotation of the pair field by the amount
u. It is our claim thatC(†) or u can be obtained by the
requirement that̂ ĉ& t or ^ĉĉ& t be independent oft, which
coincides with the value fixed by minimizing the equilibrium
free energy. The above form of the transformed density ma-
trix implies that the new state is constructed by adding an
infinite number of the unstable modes present in the uncon-
densed state in a coherent way.

B. Symmetry breaking and Goldstone mode

When the symmetry of the Hamiltonian or the Lagrangian
is broken by the ground state, the on-shell equation tells us
about the existence of the Goldstone mode as an excited state
and its explicit form of wave function. Since we are working
in finite temperature, the symmetry breaking nature is char-
acterized by the nonzero thermal expectation value of the
symmetry breaking order parameter. We first discuss the
problem in general terms.~For the special case, the problem
has been discussed in Ref.@10#.!

Let us assume that the field operator has several compo-
nents denoted byf̂n(x), n51,2, . . . ,N, and suppose that
the Hamiltonian or the Lagrangian density
L(f̂)[L„f̂n(x),]mf̂n(x)…, where]m5(]0 ,¹), be invariant
under a continuous global transformation of the field whose
infinitesimal version is given as

f̂n~x!→f̂n~x!1(
m

an,mf̂m~x!, ~4.27!

wherean,m is an infinitesimal transformation parameter in-
dependent of x. Consider the generating functional
W@J1 ,J2# defined by~2.4! and ~2.5! with the operatorÔ
replaced byf̂n(x) ~with t I52`):

e~ i /\!W@J1 ,J2#5Tr K̂J1r̂ I~K̂
J2!† ~4.28!

K̂Ji5T expF2
i

\E2`

`

dtS Ĥ2(
n
E d3x Jin~x!f̂n~x! D G

~ i51,2!. ~4.29!

ThenW@J1 ,J2# is invariant under

Jin~x!→Jin~x!2(
m

Jim~x!am,n ~ i51,2!. ~4.30!

Therefore we have the relation
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05(
i51

2

(
nm

E d4x
dW

dJin~x!
Jim~x!am,n

5(
i

(
nm

E d4x~21! i11f in~x!Jim~x!am,n

52(
i

(
nm

E d4x
dG

df im~x!
f in~x!am,n . ~4.31!

We have used the relations~2.7! and ~2.10!. This expresses
the symmetry of the Hamiltonian in terms ofG. Now differ-
entiate ~4.31! with respect to f1k(y) and set
f1n(x)5f2n(x) to a symmetry breaking solutionfn

(0) , sat-
isfying

dG@f#

df1n~x!
U
f1n~x!5f2n~x!5f

n
~0!

50. ~4.32!

We assume thatfn
(0) is space-time independent. After mak-

ing the substitutionx↔y, we get

E d4y(
m,l

@G1n,1m
0 ~x,y!1G1n,2m

0 ~x,y!#am,lf l
~0!50,

~4.33!

G in, jm
0 ~x,y![S d2G

df in~x!df jm~y! D
f15f2[f~0!

. ~4.34!

The equation~4.33! just takes the form of the on-shell equa-
tion ~3.12!. Since the integration*d4y projects out
(v,k)5(0,0), it says that there is an excitation mode satis-
fying the dispersion relationv(k50)50, as long asfn

(0)

Þ0. This is the Goldstone modeuG& appearing as a conse-
quence of the symmetry breaking with the wave function
Df (1)(x)5an,mfm

(0) at four momentum (v,k)5(0,0). See
~3.39!. Recall here that the above arguments are full order
ones.

Let us study an example by taking the system of super-
fluid 4He. The Hamiltonian~4.1! is invariant under the phase
transformation

ĉ~x![„ĉ~x!†,ĉ~x!…→„exp~2 iu!ĉ~x!†,exp~ iu!ĉ~x!…

;„~12 iu!ĉ~x!†,~11 iu!ĉ~x!…. ~4.35!

Thereforea1,152 iu, a2,25 iu, a1,25a2,150, and we see
that the wave function of the Goldstone mode at four mo-
mentum in the space offa5(f1,f2)5(ĉ†,ĉ) is propor-
tional to (2f (0)†,f (0)). This is the wave function of the
Goldstone mode corresponding to the symmetry~4.35!. By
puttingk50 in the mode determining equation we can show,
after some algebra, that „Df†(2k),Df(k)…
5(2f (0)†,f (0)) satisfies it if we setk050 there. This is of
course in accord with the Hugenholtz-Pines theorem@22#.

We want to stress here again that we have started from the
generating functionalG, which preserves the symmetry of
the Hamiltonian under~4.35! and we have done no further
approximations. This leads automatically to the correct
Goldstone spectrum in contrast to the literature@23#, where
some adjustments in the course of the calculation are needed.

Another example is the excitation spectrum in the case
where the pairing occurs. As has been stated, there has been
controversy@21# about the presence or the absence of the gap
in the case of pairing condensation. But it is clear from our
discussions that there is no gap in all orders of perturbation if
the expansion parameter is invariant under the transforma-
tion ~4.35!. Here it is crucial that both^ĉ (†)& and
^ĉ (†)ĉ (†)& have nonvanishing values as stationary solutions.
This is in contrast with the case of the superconductor where
^ĉ (†)&50 and the gap is present. See Ref.@24# for details.
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APPENDIX A: FORMULAS OF LEGENDRE
TRANSFORMATION

Here several formulas of Legendre transformation are col-
lected that are sufficient for the discussions in this paper. In
the formulas below conjugate variables of Legendre transfor-
mation are denoted byJi andf i . The indexi represents all
the attributes characterizing the variable including space-
time coordinatex: f i5fa(x), where the indexa represents
discrete degrees of freedom other thanx. Therefore( i im-
plies actually *d4x(a . Kronecker d i j signifies
dabd

4(x2y), whered4(x2y) is the four-dimensional Dirac
d function. For example,]f i /]f j5d i j implies the func-
tional derivativedfa(x)/dfb(y)5dabd

4(x2y). The sum-
mation convention is employed where the repeated index is
summed or integrated over.

Legendre transformation betweenW@J# andG@f# is de-
fined as follows:

G@f#5W@J#2Ji
]W@J#

]Ji
, ~A1!

wheref is defined by

f i5
]W@J#

]Ji
. ~A2!

This is inverted to get

Ji5Ji@f#, ~A3!

which is inserted into~A1!. In this sense, Eq.~A1! is written
more explicitly as

G@f#5W†J@f#‡2Ji@f#f i . ~A4!

1. Conjugate relation

Differentiating ~A4! by f j ,

]G@f#

]f j
5

]W@J#

]Ji

]Ji
]f j

2
]Ji
]f j

f i2Jj . ~A5!

By ~A2!, we get
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]G@f#

]f i
52Ji or G i

~1!@f#52Ji . ~A6!

2. Inverse matrix relation

Differentiating ~A2! with respect tof j we have, using
~A6!,

d i j5
]f i

]f j
5

]2W@J#

]Ji]Jk

]Jk
]f j

52
]2W@J#

]Ji]Jk

]2G@f#

]fk]f j
. ~A7!

We write this relation briefly as

Wik
~2!Gk j

~2!5G ik
~2!Wkj

~2!52d i j . ~A8!

The first equality is obtained by either noting thatG (2) and
W(2) are a symmetric matrix or by differentiating~A6! by
Jj .

3. Differentiation by spectator parameter

Let aa be some parameter that is regarded as a constant~a
spectator! when we make the Legendre transformation. Then
the inverse process~A2! through~A3! is written more explic-
itly as

f i5
]W@J,a#

]Ji
5f i@J,a# ~A9!

→Ji5Ji@f,a#. ~A10!

Now we take the derivative ofG@f,a# by aa with f fixed.
This is easily done as follows:

G@f,a#5W@J@f,a#,a#2Ji@f,a#f i , ~A11!

]G@f,a#

]aa
5

]W@J,a#

]aa
1

]W@J,a#

]Ji

]Ji@f,a#

]aa

2
]Ji@f,a#

]aa
f i . ~A12!

Thus we get

]G@f,a#

]aa
5

]W@J,a#

]aa
. ~A13!

Higher derivatives are obtained straightforwardly by~A13!.

APPENDIX B: IDENTITIES OF THE SECOND
DERIVATIVES OF W†J1 ,J2‡ AND G†f1 ,f2‡

We take a field theoretical system and use the notation
x5(t,x). In order to make the formulas explicit, we write
the x dependence separately in this appendix. In the follow-
ing the repeated Roman index is summed over 1 and 2, while
the repeated space-time variable is integrated as*2`

` d4x.
The following ways of writing are adopted below:

Wi1i2••• i n
~n! ~x1 ,x2 , . . . ,xn![

dnW

dJi1~x1!dJi2~x2!•••dJin~xn!
,

~B1!

and similarly forG. For J15J2 we introduce a special nota-
tion defined by the superscriptJ as follows:

Wi1i2••• i n
~n!J ~x1 ,x2 , . . . ,xn!

[„Wi1i2••• i n
~n! ~x1 ,x2 , . . . ,xn!…J1~x!5J2~x!5J~x! . ~B2!

ForG we use also superscriptJ but it implies that it is evalu-
ated at the value off i(x) satisfying~2.14!. The superscript 0
then implies the stationary valuef i

(0)(x) f i(x) correspond-
ing to J15J250, for example,

G i1i2••• i n
~n!0 ~x1 ,x2 , . . . ,xn!

[„G i1i2••• i n
~n! ~x1 ,x2 , . . . ,xn!…f1~x!5f2~x!5f~0!~x! . ~B3!

We first note two important identities:

G i j
~2!~x,y!~21! i1 jWj ,k

~2!~y,z!5Wi , j
~2!~x,y!~21! i1 jG j ,k

~2!~y,z!

52d ikd
4~x2z!, ~B4!

(
i , j51,2

Wi , j
~2!J~x,y!50. ~B5!

The first identity is obtained by differentiating~2.10! by
f j (z) and is an example of the formula~A7!. The second
one is a consequence of the definition ofW@J1 ,J2# given in
~2.4!. In order to see this, let us take the derivative of~2.7!
with respect toJ, keeping in mind the form~2.4!:

W11
~2!J~x,y!5

i

\
^TÔ~x!Ô~y!&,

W12
~2!J~x,y!52

i

\
^Ô~y!Ô~x!&, ~B6!

W21
~2!J~x,y!52

i

\
^Ô~x!Ô~y!&,

W22
~2!J~x,y!5

i

\
^T̃Ô~x!Ô~y!&. ~B7!

Here T̃denotes the antitime ordering andÔ(x) is the Heisen-
berg operator defined by

Ô~x!5Û†~ t,t I !Ô~ t50,x!Û~ t,t I !,

whereÛ(t,t I) is given in ~2.3! and the expectation value is
defined by^&[Trr̂ I•••. Because the sum of the above four
equations is identically zero owing to the definition of T
and T̃, Eq. ~B5! follows.

We consider next the relations for the retarded Green’s
function. Takei5k51 in ~B4!, then

G1,j
~2!~x,y!~21! jWj ,1

~2!~y,z!5W1,j
~2!~x,y!~21! jG j ,1

~2!~y,z!

5d4~x2z!. ~B8!

Here we use~B4! and ~B5! to rewrite ~B8! in the form
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„G1,1
~2!J~x,y!1G1,2

~2!J~x,y!…„W1,1
~2!J~y,z!1W1,2

~2!J~y,z!…

52d4~x2z!. ~B9!

But we note the relation

W1,1
~2!J~y,z!1W1,2

~2!J~y,z!5
i

\
$^TÔ~y!Ô~z!&2^Ô~z!Ô~y!&%

5
i

\
u~y02z0!^@Ô~y!,Ô~z!#&.

~B10!

Therefore( jG1,j
(2)J(x,y) is the inverse of the retarded Green’s

function.
A more general proof of the identity~B5! is as follows.

By this technique we can derive various identities. For this
purpose let us putJ1(x)5J2(x)[J(x) in ~2.7!. Since
f1(x)5f2(x)[f(x) in this case, we have the identity

S dW@J1 ,J2#

dJ1~x! D
J1~x!5J2~x![J~x!

1S dW@J1 ,J2#

dJ2~x! D
J1~x!5J2~x![J~x!

50. ~B11!

Differentiating~B11! by J(y) we get~B5!. Further differen-
tiation leads to various correlation equalities.

Now the same process is applied toG. Setting
f1(x)5f2(x)5f(x) in ~2.10!, we have the following iden-
tity:

S dG@f1 ,f2#

df1~x! D
f1~x!5f2~x![f~x!

1S dG@f1 ,f2#

df2~x! D
f1~x!5f2~x![f~x!

50. ~B12!

Let us differentiate~B12! by f(y), then we obtain an analog
of ~B5!:

(
i , j51,2

G i , j
~2!J~x,y!50. ~B13!

Using ~B4!, ~B8!, and ~B13!, another identity analogous to
~B9! is obtained:

„W1,1
~2!J~x,y!1W1,2

~2!J~x,y!…„G1,1
~2!J~y,z!1G1,2

~2!J~y,z!…

52d4~x2z!. ~B14!

APPENDIX C: EXPANSION OF W OR G IN POWERS
OF J „2… OR f „2…—RELATION WITH EQUILIBRIUM FREE

ENERGY

Let us defineW@J1 ,J2 ,J3# by introducing another source
J3 in the imaginary time path:

e~ i /\!W@J1 ,J2 ,J3#5Tr$ÛJ1
r̂ I
J3ÛJ2

† %, ~C1!

r̂ I
J35Tt expS 2

1

\E0
\b

dt$Ĥ2J3~t!Ô% D , ~C2!

where Tt implies thet ordering and we suppress the space
coordinate that is defined in~2.5!. The correspondingG is
also defined as follows:

G@f1 ,f2 ,f3#5W@J1 ,J2 ,J3#2E
t I

`

dtJ1~ t !f1~ t !

1E
t I

`

dtJ2~ t !f2~ t !2
1

i E0
\b

dtJ3~t!f3~t!.

~C3!

Here we have introduced

dW

dJi~ t !
5~2 ! i11f i ~ i51,2!,

dW

dJ3~t!
5
1

i
f3~t!.

~C4!

The following change of variables is performed at this point:

J~1 !5 1
2 ~J11J2!, J~2 !5J12J2 ~C5!

or equivalently

J15J~1 !1 1
2J

~2 !, J25J~1 !2 1
2J

~2 !. ~C6!

We have the same relations forf (1) andf (2). In the fol-
lowing we consider W@J(1),J(2),J3# and
G@f (1),f (2),f3#. It is easy to get the following relations:

dW

dJ~2 !~ t !
5f~1 !~ t !,

dW

dJ~1 !~ t !
5f~2 !~ t !, ~C7!

J1f12J2f25J~1 !f~2 !1J~2 !f~1 !.

Thus we can write

G@f~1 !,f~2 !,f3#5W2E
t I

`

dtJ~1 !~ t !
dW

dJ~1 !~ t !

2E
t I

`

dtJ~2 !~ t !
dW

dJ~2 !~ t !

2E
0

\b

dtJ3~t!
dW

dJ3~t!
.

Now we expandW or G in powers ofJ(2) or f (2). Since
these variables are unphysical ones being set to zero in the
end, we need an expansion coefficient that is linear inJ(2) or
f (2) in practical problems. Then the following equation is
obtained easily:

W@J~1 !,J~2 !50, J3#5Wb@J3#. ~C8!

HereWb@J3# is related to the imaginary time free energy as

Wb@J3#5
\

i
ln Trr̂ I

J3 .
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But together with~C8!, the second equation of~C7! tells us
that

f~2 !→0 as J~2 !→0.

On the other hand, the identity of the Legendre transforma-
tion

dG

df~1 !~ t !
52J~2 !~ t !

implies that in the above limitG loses the dependence on
f (1). Thus whenJ(2)→0, we have a second imaginary time
free energy;

G@f~1 !,f~2 !50,f3#

5Wb@J3#2E
0

\b

dtJ3~t!
dWb@J3#

dJ3~t!

5Gb@f3#. ~C9!

Consider next the linear term inJ(2) or f (2). By definition

dW

dJ~2 !~ t !
U
J~2 !50

5f~1 !~ t ! U
J~2 !50

,

dG

df~2 !~ t !
U
f~2 !50

52J~1 !~ t ! U
f~2 !50

,

so that the following dual forms are obtained:

W@J~1 !,J~2 !,J3#5Wb@J3#1E
t I

`

dtJ~2 !~ t !f~1 !~ t !

1O@~J~2 !!2#, ~C10!

G@f~1 !,f~2 !,f3#5Gb@f3#2E
t I

`

dtf~2 !~ t !J~1 !~ t !

1O@~f~2 !!2#, ~C11!

where on the right-hand side of these equations,f (1)(t) or
J(1)(t) is actually

f~1 !~ t !5f~1 !~J~2 !50,J~1 !,J3 ;t !,

J~1 !~ t !5J~1 !~f~2 !50,f~1 !,f3 ;t !.

It can be shown that the expansion coefficients of higher
orders are expressed by the multiple retarded anticommuta-
tors of the operatorÔ. On the other hand, the Tailor expan-
sion in terms off (1) brings about the multiple retarded com-
mutator, which has a real physical meaning and will be
reproduced in Sec. III and Sec. IV A. See also Ref.@10#.

We have seen that in the limit whenJ(2) or f (2) goes to
zero the imaginary time free energy is reproduced. But an-
other important limit exists where the equilibrium free en-
ergy is recovered. This is the case when

f1~ t !5f2~ t !5f3~t!5const,

i.e.,

f~1 !~ t !5f3~t![f5const3f~2 !~ t !50.

Obviously the above relation is transformed to that ofJ vari-
ables as follows;

J1~ t !5J2~ t !5J3~t!5const8,

i.e.,

J~1 !~ t !5J3~t![J5const83J~2 !~ t !50.

Thus we get

J~1 !~f~2 !50,f~1 !5f3[f!5J3~f~2 !50,f~1 !5f3[f!

52 i
dGb@f#

df
. ~C12!

In this way we arrive at

dG

df~2 !~ t !
U
f~2 !50,f~1 !5f35f

5 i
dGb@f#

df
. ~C13!

The corresponding obvious equation forW is

dW

dJ~2 !~ t !
U
J~2 !50,J~1 !5J35J

5 i
dWb

dJ
. ~C14!

In Sec. III, we discuss the on-shell expansion ofG, which is
the expansion of@dG/df (2)(t)#uf(2)50 in powers off (1).
We will see that the multiple retarded commutator emerges
and the expansion relates two different density matrices cor-
responding to condensed or uncondensed ground state.

APPENDIX D: SOLUTION OF ON-SHELL EXPANSION

Here the solutions of higher orders of the on-shell expan-
sion ~3.23!, etc. are studied and~3.25! is derived. For this
purpose the graphical notations are introduced.

~D1!

~D2!

If the vertex is summed overi 251,2, then we denote it
as, for example,

~D3!

With this notation,~B4!, ~B9!, ~B5!, ~B13!, ~B14!, and
~3.12! are represented as
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Looking at~3.24!, we can writeDf (k)(x) for generalk as
follows:

~D4!

In the above equation, the summation is taken in the fol-
lowing way. First we dividek points intop groups withna

~with a51,2, . . . ,p) points contained in ath group
(na>1). Thus(a51;pna5k. (Pk

implies the sum over all

possible grouping ofk points intop groups and the sum over
all possiblena satisfying (a51;pna5k. Finally we sum
over p of course.

Now apply d/dJ1(x)1d/dJ2(x) to ~B9!. When it oper-
ates on the functional off, we have to use the chain differ-
entiation rule:

d

dJi~x!
5

df j~y!

dJi~x!

d

df j~y!
5~21! j11

d2W

dJi~x!dJj~y!

d

df j~y!
.

Thus we get, after renaming of the space-time points,

~D5!

Here we insert into~D5! the following relation obtained by rewriting~B5!:

~D6!

In this way ~D5! is further transformed as

~D7!
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From ~D7! and ~B14!, the following two equations are obtained:

~D8!

~D9!

The relation~D8! suggests the general formula fork>2 as represented in the following equation:

~D10!

Here(Qk
implies the following process.k points are divided intop groups withna points satisfying(a51;pna5k, and

1;k external legs are distributed to these groups. Finally we sum over all possible ways in these processes. It should be
remarked that 1;k legs are assumed to be distinguishable in these processes. This is different from the summation(Pk

.
The proof of~D10! can be done by a mathematical induction. Outline of the proof runs as follows: Assume~D10! is correct

for k and apply againd/dJ1(x)1d/dJ2(x) on both sides of~D10!. Then we get

~D11!
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Let us rewrite the first term of~D11! by applying ~D8! to the part involving index (k11). After that we can use the
assumption of the induction. As a result the first term is transformed into

~D12!

Here we have used the obvious symmetry character ofG (3). Also by the symmetry ofG (p) the last term of~D11! is rewritten
as

~D13!

Collecting these observations, we see that~D10! holds fork11.
Now we are in a position to prove the following general formula forDf (k) as shown in~D14!;

~D14!

Consider first the casek52. The relation~3.23! is written graphically as follows:

~D15!

Therefore, by using~D9! and~B14!, we first get thek52 version of~D14! plus a term proportional toDf (1), which satisfies
a homogeneous equation~3.12!. However, we are finally interested in the sumDf (1)1Df (2)1•••1Df (n)1••• and for the
sum it can be absorbed by the redefinition of the scale ofDf (1). Therefore we neglect such a term in the solution of
Df (k).
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The general proof is again due to the mathematical induction; assume~D14! is correct fork. Then using~D10!, the
right-hand side of~D14! for k11 is transformed as follows:

Here in the last equality we have used~D4!.

Finally the following formula is proved, which expressesW1,i1i2••• i n
(n11)0 (x,y1 ,y2 , . . . ,yn) in the operator form. It is given by

the multiple retarded Green’s function,
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~D16!

where we have defined

u~ tx ,ty1,ty2, . . . ,tyn!

5u~ tx2ty1!~ ty12ty2!•••u~ tyn21
2tyn!, ~D17!

and(P$y1 ,y2 , . . . ,yn%
signifies the sum over all possible permu-

tations of$y1 ,y2 , . . . ,yn%. We will write in the following

(
P$y1 ,y2 , . . . ,yn%

u~ tx ,ty1,ty2, . . . ,tyn!

3@•••†@f̂~x!,f̂~y1!#,f̂~y2!‡,•••f̂~yn!#

[R„f̂~x!,f̂~y1!,f̂~y2!, . . . ,f̂~yn!…. ~D18!

The proof of~D16! is rather trivial.@For n51 it has already
been derived in~B10!.# As for generaln, consider the equa-
tion

„W1
~1!~x!…J15J25J5^~ÛJ!

†f̂~x!ÛJ&. ~D19!

W1,i1i2••• i n
(n11)0 (x,y1 ,y2 , . . . ,yn) is obtained by differentiating

~D19! throughJ(y1),J(y2), . . . ,J(yn) and takingJ50. As-
sume t1>t2>•••>tn ~every t i is smaller thanx05t of
course! and operatord/dJ(y1). It operates on bothÛJ and
(ÛJ)

†, producing the commutator@f̂(x),f̂(y1)#. Because
of the assumed time ordering, further application of
d/dJ(y2) brings about the commutator of the above commu-
tator andf̂(y2), etc. For general time ordering, we have
only to supply the factoru(tx ,ty1,ty2, . . . ,tyn) and sum over
all possible combinations of the ordering. This proves~D16!.

APPENDIX E: FEYNMAN RULE OF NON-HERMITE
FIELD—PERTURBATIVE RULE FOR W

IN NORMAL CASE

The nonequilibrium Feynman rule ofW@J# in the normal
case has been derived in@14# using the path-integral tech-
nique. Since for the normal case the Feynman rule is com-
pactly given, we present it here. It is used in Sec. IV A 2. In
Ref. @14# the initial density matrix is assumed to be of the
equilibrium canonical form. The rule is slightly different for
the Hermite and the non-Hermite field and we have to use
the results of the latter for the4He Hamiltonian~4.1!. The
source term is inserted as in~4.3! and using~4.5!, the expec-
tation value is given, for example, by

f~x!5^ĉ~x!&5
dW@J#

dJ1~x!
U
J15J250,J̄15 J̄250

52
dW@J#

dJ2~x!
U
J15J250,J̄15 J̄250

. ~E1!

Let us introduce (6) variables as in~C5! and the same for
c and f. Since the dependence onJ(2) is essential, we
assumeJ(1)50 but the recovery of nonvanishingJ(1) is
easy. Then, writing\vk5(\2k2/2m)2m and understanding
that all thef (†)’s are set to zero in the end~normal case!, the
formula is expressed as@14#

exp
i

\
W@J#5)

k
f b~vk!e

b\vkexpS0

3expS 2
i

\ECdtV„c~ t !,c†~ t !…D U
c5c†50

.

~E2!

HereV is given by the interaction part of the Hamiltonian
~4.1!:

V„ĉ~ t !,ĉ†~ t !…[
1

2E d3x d3yĉ†~ t,x!ĉ†~ t,y!

3U0~x2y!ĉ~ t,y!ĉ~ t,x!. ~E3!

If we write explicitly

i

\ECdtV„c~ t !,c†~ t !…5
i

\Et I
`

dtV„c1~ t !,c1
†~ t !…

2
i

\Et I
`

dtV„c2~ t !,c2
†~ t !…

1
1

\E0
\b

dtV„c3~t!,c3
†~t!….

~E4!

S0 is the differential operator, which is written by the vari-
ablesc (†)(6) andc3[c as follows:
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S05E E dt ds d3x d3yS d

dc~1 !~x!
1

i

\
J̄~2 !~x! DDR~x2y!

d

dc~2 !†~x!

1E E dt ds d3x d3y
d

dc~2 !~x!
DA~x2y!S d

dc~1 !†~y!
1

i

\
J~2 !~y! D

1E E dt ds d3x d3yS d

dc~1 !~x!
1

i

\
J̄~2 !~x! D D̄~x2y!S d

dc~1 !†~y!
1

i

\
J~2 !~y! D

1E E ds dt d3x d3y
d

dc~t,x!
Ḡ~1 !~t,x;y!S d

dc~1 !†~y!
1

i

\
J~2 !~y! D

1E E dt dt d3x d3yS d

dc~1 !~x!
1

i

\
J̄~2 !~x! D Ḡ~2 !~x;t,y!

d

dc†~t,y!

1E E dt dt8 d3x d3y
d

dc~t,x!
D̄~t,x;t8,y!

d

dc†~t8,y!
. ~E5!

Here the notationx5(t,x),y5(s,y) is used. There are six
kinds of propagators and it should be noticed thatf (2) is
connected only tof (1) and not tof (2) or f3 . The propa-
gators are given by

DR~x2y!5u~ t2s!E d3k

~2p!3
eik•~x2y!2 ivk~ t2s!,

DA~x2y!52u~s2t !E d3k

~2p!3
eik•~x2y!2 ivk~ t2s!,

D̄~x2y!5E d3k

~2p!3 S f b~vk!1
1

2Deik•~x2y!2 ivk~ t2s!,

Ḡ~1 !~t,x;t,y!5E d3k

~2p!3
@ f b~vk!11#

3e2vkteik•~x2y!1 ivk~ t2t I !,

Ḡ~2 !~x;t,y!5E d3k

~2p!3
f b~vk!e

vkteik•~x2y!2 ivk~ t2t I !,

D~t,x;t8,y!5E d3k

~2p!3
f b~vk!e

ik•~x2y!e2vk~t2t82b\/2!

3$u~t2t8!evkb\/21u~t82t!e2vkb\/2%.

The expectation value of any operator of normal ordered
form Ô(ĉ†,ĉ) can be calculated by an appropriate differen-
tiation of ~E2! with respect toJ(2) and J̄(2). Or it can be
alternatively obtained by using the formula
^Ô&5Trr̂ I Û

†ÔÛ/Trr̂ I . This is calculable by inserting the
factorO„c†(x),c(x)… at the end of~E2! and discarding the
diagrams that are not connected with the inserted operator
Ô. Taking only the connected graphs is equivalent to the
division by Trr̂ I .
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